Scott Complexity and Adjoining Roots to Finitely Generated Groups

نویسنده

  • LARSEN LOUDER
چکیده

We prove a number of generalizations of the fact that any homomorphism of a nonorientable surface group with Euler characteristic −1 to a free group has cyclic image. This is important for our work on Krull dimension of limit groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Krull Dimension for Limit Groups Iii: Scott Complexity and Adjoining Roots to Finitely Generated Groups

This is the third paper in a sequence on Krull dimension for limit groups, answering a question of Z. Sela. We give generalizations of the well known fact that a nontrivial commutator in a free group is not a proper power to both graphs of free groups over cyclic subgroups and freely decomposable groups. None of the paper is specifically about limit groups.

متن کامل

Krull Dimension for Limit Groups Iv: Adjoining Roots

This is the fourth and last paper in a sequence on Krull dimension for limit groups, answering a question of Z. Sela. In it we finish the proof, analyzing limit groups obtained from other limit groups by adjoining roots. We generalize our work on Scott complexity and adjoining roots from the previous paper in the sequence to the category of limit groups.

متن کامل

Delzant’s variation on Scott Complexity

We give an exposition of Delzant’s ideas extending the notion of Scott complexity of finitely generated groups to surjective homomorphisms from finitely presented groups.

متن کامل

Probability of having $n^{th}$-roots and n-centrality of two classes of groups

In this paper, we consider the finitely 2-generated groups $K(s,l)$ and $G_m$ as follows:$$K(s,l)=langle a,b|ab^s=b^la, ba^s=a^lbrangle,\G_m=langle a,b|a^m=b^m=1, {[a,b]}^a=[a,b], {[a,b]}^b=[a,b]rangle$$ and find the explicit formulas for the probability of having nth-roots for them. Also, we investigate integers n for which, these groups are n-central.

متن کامل

Torsion of Abelian Varieties, Weil Classes and Cyclotomic Extensions

Let K ⊂ C be a field finitely generated over Q, K(a) ⊂ C the algebraic closure of K, G(K) = Gal(K(a)/K its Galois group. For each positive integer m we write K(μm) for the subfield of K(a) obtained by adjoining to K all mth roots of unity. For each prime l we write K(l) for the subfield of K(a) obtained by adjoining to K all l−power roots of unity. We write K(c) for the subfield of K(a) obtaine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008